
Rerade Compute ASIC Fabrication

Client: Dr. Henry Duwe Advisor: Dr. Cheng Wang

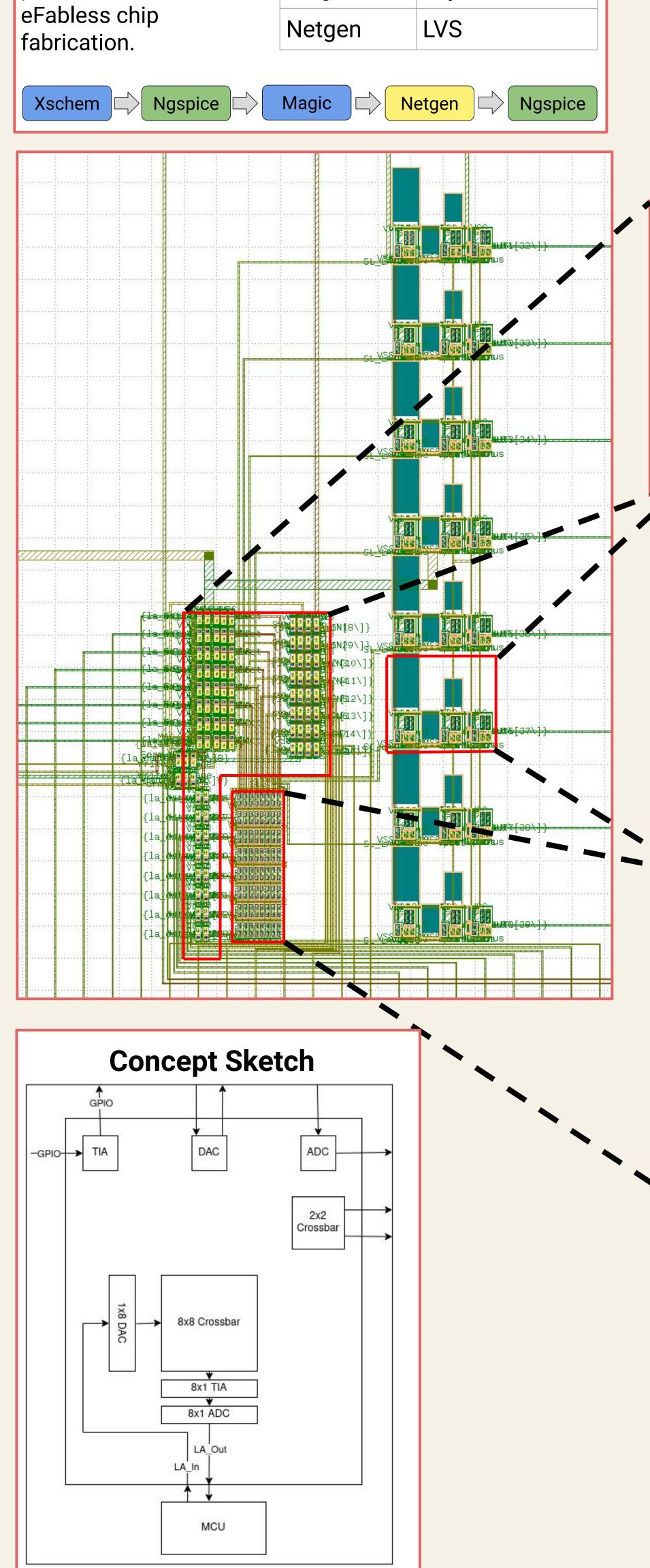
Intro/Motivation

- Implement an 8x8 ReRAM crossbar in the SkyWater 130 nm process
- In memory computing eliminates memory bottlenecks, increasing computation speed
- Contribute towards lowa State's institutional knowledge of eFabless chip fabrication
- Contribute towards ReRAM research

Process Flow

Designing all of our components using open-source tools is required in the analog process flow for

Tool	Function		
Xschem	Circuit Editor		
Ngspice	Spice Simulator		
Magic	Layout & DRC		


Regasa Dukele, Matthew Ottersen, Aiden Petersen, Joshua Thater

Users

- Future students interested in analog ASIC design
- Dr. Duwe
 - Wants to develop in house ISU computational ASIC capabilities
- Dr. Wang
 - Interested in ReRAM computation and fabrication

Design Requirements

- 8x8 ReRAM crossbar can perform write, read, & MAC operations
- Create periphery analog circuitry to support crossbar computations
- Usage of 1T1R storage cell
- Crossbar must output high whenever a single storage cell is in a LRS (low resistive state)
- Interface with the ReRAM compute crossbar using the Caravel Harness
- Design must fit in user project area (10 mm²)
- Design must pass the eFabless pre-check
 Create tutorial documentation on open-source analog design flow

Engineering Standards

- IEEE 1364-2005 : Verilog
- ISO/IEC 9899:2011 : C11
- IEEE 1149-2010 : Mixed Signal Test Bus

Input Voltage Shifters

We have 3 blocks of input voltage shifters corresponding to each input. We have 3 different inputs to the crossbar:

- Bitline
- Sourceline
- Wordline

Each input needs a different voltage to operate the 1T1R cells.

Output Pipeline

Pipeline necessary to convert output currents into usable output voltages. Contains 3 stages:

- 1. TIA (I -> -V)
- 2. Inverting Amp (-V -> V)
- 3. ADC (AV -> DV)

ReRAM Crossbar

8x8 Crossbar of 1T1R cells. Is able to do multiply and accumulates by summing currents along it's column.

1T1R Cells contain one ReRAM cell and 1 transistor. It stores a value of '1' when its conductance is high, and '0' when it's conductance is low.

Testing Unit Testing

in <mark>estimate participation</mark>

en fer fer fer fer fer i

n Alen Aren Alen Alen Aren

in he he he he he h

- Schematic simulations
- Post-layout R+C simulations

System Testing

• Corner and error testing of top-level design

Results

Our testing has shown the 8x8 compute crossbar we designed works within expected error margins.

# of cells in LRS	# of cells in HRS	TEST	BL_In (V)	SL_In (V)	InvOut (V)	Vout (V)
0	8	ТТ	0.1879	0.0592	0.4692	0.0057
0	8	SS	0.1847	0.0578	0.4557	0.0039
0	8	FF	0.1901	0.0602	0.4795	0.0077
1	7	ТТ	0.1804	0.1203	0.7049	1.784
1	7	SS	0.1749	0.1147	0.7064	1.787
1	7	FF	0.1846	0.1245	0.7057	1.778